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Countable and Uncountable Sets

A set A is said to be finite, if A is empty or there is n € N and there is a
bijection f : {1,...,n} — A. Otherwise the set A is called infinite. Two
sets A and B are called equinumerous, written A ~ B, if there is a bijection

f: X =Y. Aset Ais called countably infinite if A ~ N. We say that A is
countable if A ~ N or A is finite.

Example 3.1. The sets (0,00) and R are equinumerous. Indeed, the func-
tion f: R — (0,00) defined by f(x) = e” is a bijection.

Example 3.2. The set Z of integers is countably infinite. Define f: N — Z
by

n/2 if n 1s even:
fmy=4 ™ chiddgorie
—(n—-1)/2 if n is odd.

Then f is a bijection from N to Z so that N ~ Z.
If there is no bijection between N and A, then A is called uncountable.

Theorem 3.3. There is no surjection from a set A to P(A).

Proof. Consider any function f: A — P(A) and let

B={ac Ala¢g f(a)}.

We claim that there is no b € A such that f(b) = B. Indeed, assume
f(b) = B for some b € A. Then either b € B hence b ¢ f(b) which is

a contradiction, or b ¢ B = f(b) implying that b € B which is again a
contradiction. Hence the map f is not surjective as claimed. L

As a corollary we have the following result.
Corollary 3.4. The set P(N) is uncountable.
Proposition 3.5. Any subset of a countable set is countable.

Proof. Without loss of generality we may assume that A is an infinite subset
of N. We define h : N — A as follows. Let A(1) = min A. Since A is infinite,
A is nonempty and so h() is well-defined. Having defined h(n — 1), we
define h(n) = min(A\ {h(1),...,h(n—1)}). Again since A is infinite the set
(A\{h(1),...,h(n—1)}) is nonempty, h(n) is well-defined. We claim that
h is a bijection. We first show that h is an injection. To see this we prove
that h(n + k) > h(n) for all n,k € N. By construction h(n + 1) > h(n)
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for all n € N. Then setting B = {k € N|h(n + k) > h(n)} we see that
1 € Band if h(n+ (k—1)) > h(n), then h(n + k) > h(n + (k—1)) > h(n).
Consequently, B = N. Since n was arbitrary, h(n + k) > h(n) for all
n,k € N. Now taking distinct n,m € N we may assume that m > n so that
m = n + k. By the above h(m) = h(n + k) > h(n) proving that A is an
injection. Next we show that A is a surjection. To do this we first show that
h(n) > n. Let C = {n € N|h(n) > n}. Clearly, 1 € C. If k € C, then
h(k 4+ 1) > h(k) > n so that h(k+ 1) > k+ 1. Hence k + 1 € C and by the
principle of mathematical induction C' = N. Now take ng € A. We have to
show that h(mg) = ng for some mg € N. If ng = 1, then my = 1. So assume
that ng > 2. Consider the set D = {n € A|h(n) > ng}. Since h(ng) > no,
the set D is nonempty and by the well-ordering principle D has a minimum.
Let mg = minD. If my = 1, then h(mg) = minA < ng < h(my) and
hence h(mg) = ng. So we may also assume that n~ min A. Then h(mg) >
ng > h(mg —1) > ... > h(1) in view of definitions of mg and h. Since
h(mg) = min(A\ {h(1),...,h(mo—1)}) and ng € A\ {h(1),...,h(mo—1)}
and h(mg) > ng, it follows that h(mg) = ng. This proves that h is also a
surjection. ]

Proposition 3.6. Let A be a non-empty set. Then the following are equiv-
alent.

(a) A is countable.
(b) There exists a surjection f: N — A.
(¢c) There exists an injection g : A — N,

Proof. (a) = (b) If A is countably infinite, then there exists a bijection
f : N — A and then (b) follows. If A is finite, then there is bijection
h:{l,...,n} — A for some n. Then the function f: N — A defined by

i) = {f}i(z) L<i<n,
(n) $ > n.

1s a surjection.

(b) = (c). Assume that f: N — A is a surjection. We claim that there is
an injection g; A — N. To define g note that if a € A, then f~1({a}) # 0.
Hence we set g(a) = min f~((a)}). Now note that if a # @/, then the sets
fY{a})n f~1({a’}) = 0 which implies min~'({a}) # min~!({a’}). Hence
g(a) # g(a’)and g : A — N is an injective.

(¢) = (a). Assume that g : A — N is an injection. We want to show that A
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is countable. Since g : A — ¢g(A) is a bijection and g(A) C N, Proposition
3.5 implies that A is countable. ]

Corollary 3.7. The set N x N is countable.

Proof. By Proposition 3.6 it suffices to construct an injective function f :
N xN — N. Define f: NxN — N by f(n,m) = 2"3™. Assume that
2n3m —= k3l If n < k, then 3™ = 273!, The left side of this equality is
an odd number whereas the right is an even number implying n = k£ and
3m = 3!, Then also m = [. Hence f is injective. L]

Proposition 3.8. If A and B are countable, then A x B is countable.

Proof. Since A and B are countable, there exist surjective functions f : N —
Aand g : N — B. Define h : NxN — Ax B by F(n,m) = (f(n),g(m)). The
function F'is surjective. Since N x N is countably infinite, there is a bijection
h:N—NXN. Then G: N x A x B defined by G = F o h is a surjection.
By part (c¢) of Proposition 3.6, the set A x B A x B is countable. Ll

Corollary 3.9. The set Q of all rational numbers is countable.

Proposition 3.10. Assume that the set I is countable and A; is countable
for everyi € I . Then \J,.; Ai is countable.

Proof. For each i € I, there exists a surjection f; : N — A;. Moreover, since
I is countable, there exists a surjection g : N — I. Now define h : N x N —
Uier Ai by F(n,m) = f,,)(m) and let h : N — NxN be a bijection. Then F
is a surjection and the composition G = Foh : N — UiE ; Ai 1s a surjection.
By Proposition 3.6, J,.,; Ai is countable. 1]

Proposition 3.11. The set of real numbers R is uncountable.

The proof will be a consequence of the following result about nested
intervals.

Proposition 3.12. Assume that (I,)nen s a countable collection of closed
and bounded intervals I,, = an,b,| satisfying 1,1 C I, for all n € N. Then

nnEN -‘r’n, 7/: m

Proof. Since |an41,bn41] C |an, by) for all n, it follows that a, < b, for all
n,k € N. So, the set A = {a,|n € N} is bounded above by every b, and
consequently a := sup A < by for all £k € N. But this implies that the set
B = {bi| k € N} is bounded below by a so that a < b := inf B. Hence

mﬂEN Iﬂ = [{11 ("] [
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Proof of Proposition 3.11. Arguing by contradiction assume that R is count-
able. Let x1,x9,x3,... be enumeration of R. Choose a closed bounded inter-
val I1 such that 1 € I;. Having chosen the closed intervals Iy, I5, ..., I, 1,
we choose the closed interval I,, to be a subset of I,,_1 such that =, & I,,.
Consequently, we have a countable collection of closed bounded intervals
(I,) such that I,,,y C I, and z, ¢ I,. Then by the above proposition,
M,en In # 0. Observe that if z belongs to this intersection, then z is not

on the list 1, x9, ..., contradiction.
&



